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Abstract— The COVID-19 pandemic and the disordered
reactions of most governments made the importance of
mathematical modelling and model-based predictions ev-
ident, even outside the scientific community. The basic
reproduction number R0 quickly entered the common jar-
gon, as a concise but effective tool to communicate the
spreading power of a disease and estimate, at least roughly,
the possible outcomes of the epidemic. However, while R0
is easily defined for simple models, its proper definition
is more subtle for larger, state-of-the-art models. Here we
show that it is nothing else than the spectral radius of
the gain matrix of a linear system, and that this matrix
generalizes R0 in the computation of the vector-valued final
epidemic size and epidemic threshold, in a large class of
finite-dimensional SIR-like models.

Index Terms— Biological systems, Compartmental and
Positive systems, Network analysis and control

I. INTRODUCTION

IN December 2019 a wave of pneumonia cases spread
through the city of Wuhan (China) [1], [2]. These were

soon attributed to a new strain of coronavirus, SARS CoV-2,
a virus related to the strains that caused the MERS and SARS
epidemics in recent years [3], but with different pathology and
epidemiology that make it a relatively unpredictable pathogen.
In a year the infection spread to affecting over 100 million
people worldwide [4]. Chinese authorities reacted by setting
up a massive campaign of testing and social restrictions. As the
pathogen spread through other countries, governments were
for the most part initially reticent to implement restrictive
measures along the line of what was done in China, only
to follow suit under the pressure of exponentially increasing
infections and consequent fatalities.

An unexpected by-product of the disease’s disruptive dy-
namics was a surge in public consciousness about the im-
portance of reliable modelling of the disease’s dynamics, to
provide predictions and guide the response to the pandemic.
Common mathematical models, such as the SIR model by
Kermack and McKendrick [5], became common parlance, and
the basic reproduction number R0 entered the pages of daily
newspapers.

A finite-dimensional SIR model is a system of three dif-
ferential equations describing the total number of susceptible
(S), infected (I) and removed (R) individuals in a population.
In virtually all studies on COVID-19 a simple variant of the
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model is used, which assumes no endemic equilibrium (all in-
fected eventually heal or die), and no vital dynamics (birth and
death for reasons other than the disease is neglected). Despite
the simplicity of the setting, these SIR-like models can have
hundreds of differential equations and thousands of parameters
to model the geographic distribution or social stratification
of the population [6]–[9], and have been successfully used
to model the diffusion of past epidemics [10], [11]. In these
cases, the time evolution of the S, I , and R compartments can
be written as:

Ṡ =−D(S)TI,

İ =AI +BD(S)TI,

Ṙ =CÃI,

(1)

where S ∈ Rm+ , I ∈ Rn+, R ∈ Rp+. Here and in the following
we use the notation D(x) for a diagonal matrix with elements
of vector x in the diagonal. Symbols A, Ã, B, and T instead
denote matrices of suitable dimensions. We assume that
(i) A is stable (all eigenvalues have strictly negative real

part),
(ii) A is Metzler (all elements except diagonal ones are

nonnegative), and all elements of Ã, B, C, and T are
nonnegative,

(iii) columns of B and C sum to 1, and columns of A + Ã
sum to 0,

(iv) all rows of T have at least one strictly positive element.
Assumption (i) guarantees the absence of endemic equilibria.
Indeed, if such an equilibrium existed, by definition it would
satisfy Ṡ = 0 and İ = 0 for I 6= 0. The first equation requires
D(S)TI = 0, which would imply that, in the second equation,
AI = 0. This contradicts (i). Assumption (ii) follows from the
nature of the right-hand side of (1), which describes flows be-
tween and within compartments, while assumption (iii) ensures
mass conservation, i.e., ‖S(t)‖1 + ‖I(t)‖1 + ‖R(t)‖1 = 1, for
all t. Assumptions (ii) and the structure of (1) further imply
that the system is positive. Finally assumption (iv) ensures that
all subcompartments of S can be infected.

The matrix product BD(S)T in (1) is known in the epi-
demiological literature (e.g., [12], [13]) as the transmission
matrix: it models all epidemiological events that lead to a new
infection, through the flow D(S)TI from compartment S to
I . Matrix A is instead known as the transition matrix: its
elements encode the flows of individuals within compartment
I , as well as from compartment I to R. The flow from I to
R, in particular, is given by ÃI , and is distributed among the
subcompartments of R through matrix C.



This family of compartmental models covers most of the
finite dimensional, deterministic epidemic models that have
been proposed and validated for the modelling of COVID-
19, including socially stratified, spatially explicit (spatially
structured) and networked models, though it excludes vital
dynamics. As an illustrative example, consider the case of a
toy metapopulation consisting of two SEIR subpopulations,
where the exposed individuals (E) are not infective, while
the infective individuals (I) can come into contact with
susceptibles of either subpopulation. The model equations for
one subpopulation are

Ṡi = −Si(ai,iIi + ai,jIj)
Ėi = Si(ai,iIi + ai,jIj)− biEi
İi = biEi − ciIi
Ṙi = ciIi,

(2)

with i = 1, j = 2, the other subpopulation model is obtained
by swapping indices. The model has 8 state variables. To
cast it into form (1) we collect them into three vectors:
S := (S1, S2)>, I := (E1, I1, E2, I2)>, R := (R1, R2)>.
The model matrices then become

A :=


−b1 0 0 0
b1 −c1 0 0
0 0 −b2 0
0 0 b2 −c2

 , B :=


1 0
0 0
0 1
0 0

 ,

T :=

(
0 a1,1 0 a1,2

0 a2,1 0 a2,2

)
, C :=

(
1 1 0 0
0 0 1 1

)
,

Ã :=


0 0 0 0
0 c1 0 0
0 0 0 0
0 0 0 c2

 .

The sign of the elements of vectors and matrices plays an
important role in the analysis of this system, so we need to
introduce some notation to avoid confusion. Given a vector x
or a matrix M , we write x ≥ 0 or M ≥ 0 if all elements
of x or M are nonnegative. Such a vector or matrix is called
nonnegative. In the case that all entries of x or M are strictly
positive, we say that x or M is positive, writing x > 0 or
M > 0.

The contributions of this paper are as follows. In section II,
we rewrite system (1) to highlight the feedback structure of
its I compartment’s dynamics, and we use this structure to
compute a loop gain matrix, called GD(S), which we show
to share the same spectral properties as the Next Generation
Matrix (NGM), the tool typically used to define the basic
reproduction number in ODE-based epidemic models (see e.g.,
[13]).

Our main contributions are in Theorems 4 and 5, which
establish a relation between GD(S) and the asymptotic distri-
bution of non-infected individuals among the compartments of
S, and prove this distribution to be the globally asymptotically
stable equilibrium of a discrete-time map over a compact set,
and in Theorem 9, which proves that, for the class of systems
we consider, a decrease of any term of matrix T (the contact
rates) implies a decrease of the final epidemic size. These
results suggest how GD(S) (more naturally than the NGM)

plays the role of a matrix-valued basic reproduction number
in the general class of systems described by (1).

We also show through Theorem 6 and its corollary how the
epidemic threshold (the threshold of susceptible individuals,
distributed among compartments of S, above which a new
infection can trigger and epidemic) is related to the spectral
radius of GD(S). In the light of the link between GD(S)
and the Next Generation Matrix, which we established, this
is a known result. The relevance stands in the link itself: if
the epidemic threshold depends only on the dynamics of the
linear feedback system (4), the vast body of results about the
robust stability and control of linear feedback systems can be
used to assess, for instance, the robustness of a sub-threshold
population in uncertain models with nominal equations of the
form (1).

II. THE BASIC REPRODUCTION NUMBER AS A LOOP GAIN
MATRIX

The basic reproduction number, R0, is defined as the
expected number of new infections that a typical infected
individual in (1) will cause, in a fully susceptible population.
It was defined algebraically in [13], [14] as the spectral radius
of the NGM (or, more precisely, the NGM with large domain),
which in the notation of (1) is written as

−BD(S0)TA−1, (3)

where S0 is the value of S at time 0. Note that the NGM is
a nonnegative matrix, a fact that follows from B, D(S0) and
T being nonnegative, from our assumption of A being stable,
and from the following result.

Lemma 1 (See [15]): Let A be a Metzler matrix whose
eigenvalues have negative real part. Then A−1 ≤ 0.
The Perron Frobenius theorem (see e.g., [16]) thus ensures
that its spectral radius equals its largest positive eigenvalue.

Starting from (3), we can give a further, more intuitive
representation of R0 as the spectral radius of the gain matrix
of the linear system that models the instantaneous diffusion of
the disease. We begin from the following algebraic result.

Lemma 2: Let M and N be matrices such that MN and
NM are square. Then the set of nonzero eigenvalues of MN
is equal to the set of nonzero eigenvalues of NM .
Now, we consider once again system (1), and specifically the
equation of İ . We can rewrite the dynamics of the infected as
the following feedback loop

İ = AI +Bu

y = TI

u = D(S)y

y

u
S (4)

The upper block is a linear time-invariant system. The input
vector u, which has the same size as S, represents the
(normalized) instantaneous flow of newly infected individuals,
which are distributed through the compartment I as dictated by



matrix B. The output vector y, of the same size as S and u, is
the fraction of susceptible individuals in each subcompartment
of S that come in contact with an infected, per unit time. The
gain matrix of this linear system is

G := −TA−1B,

and describes the ratio of y over u at steady state.
The lower block is a time-dependent gain, simply multi-

plying the vector y by the square, time-variant matrix D(S),
that is, translating the number y of infectious contacts into the
flow u of newly infected individuals according to the current
distribution of susceptible individuals. It follows that the loop
gain matrix of the feedback loop for a fixed value of S is
equal to

GD(S).

If we evaluate it at S = S0, where S0 encodes the structure of
the metapopulation in the absence of the disease, then GD(S0)
indeed describes how a given distribution y of new infections
in a fully susceptible population initially propagates under the
dynamics of (1). It easily follows from Lemma 2 and the
definition of the NGM that

Theorem 3: R0 is the spectral radius of the loop gain matrix
GD(S0).

Proof: From Lemma 2, setting M := BD(S0) and N :=
TA−1.
Note that, in the common case of a vector I of dimension
larger than S (i.e., in metapopulations where each infected
compartment is divided in more than one subcompartment),
matrix GD(S0) has smaller dimension than −BD(S0)TA−1.
It may resemble, in this sense, the NGM with small domain
from [13]. The two matrices are however not identical, in
general, even though they share the same set of nonzero
eigenvalues.

We see in the next section how the gain matrix GD(S0)
generalizes usage ofR0 in the computation of typical epidemic
quantities for all models of the form (1).

III. RELATIONS BETWEEN GD(S0) AND THE EPIDEMIC
QUANTITIES

A. The final epidemic size

A typical use of R0 is in estimating, based on initial
conditions and the structure of the population, the final epi-
demic size, i.e., the total number of individuals that will be
infected during the course of the epidemic. As long as I
vanishes asymptotically, by mass conservation the asymptotic
values of S or R, which we call S∞ and R∞, can be used
interchangeably for this purpose.

This is a simple exercise in the case where S, I and R are
scalar. First notice that, using (3), assuming S0 = 1, and taking
B = 1 according to our hypotheses, the basic reproduction
number for the scalar system is R0 = −BS0T

A = −TA . Now,
taking the first two equations in (1) we can write

dI

dS
= − A

ST
− 1,

which gives I(t) = −AT lnS(t)−S(t) +C. Assuming that S0

is asymptotic to 1 (therefore I0 is asymptotic to 0) we obtain
C = 1. Finally, assuming limt→∞ I(t) = 0 we obtain

− lnS∞ = R0(1− S∞), (5)

or equivalently − ln(1 − R∞) = R0R∞. We can general-
ize the above calculation as follows, using vector ∆ with
∆i := Si,∞/Si,0 to represent the final epidemic size weighted
on the initial population distribution, that is, the fraction
of individuals in each subcompartment of S that remain
uninfected throughout the epidemic.

Theorem 4: The asymptotic value ∆ satisfies

− ln(∆) + TA−1I0 −GD(S0)(1−∆) = 0, (6)

where 1 is a vector with elements equal to 1 and ln(∆) is the
elementwise natural logarithm of ∆.

Proof: We have∫ ∞
0

dI(τ)

dτ
dτ = I∞ − I0 =

A

∫ ∞
0

I(τ)dτ +B

∫ ∞
0

D(S(τ))TI(τ)dτ.

We know that Ṡ = −D(s)TI and, by the assumption of no
endemic equilibrium, that I∞ = 0, therefore

− I0 = A

∫ ∞
0

I(τ)dτ −B
∫ ∞

0

dS(τ)

dτ
dτ =

A

∫ ∞
0

I(τ)dτ −B(S∞ − S0).

Multiplying both sides by TA−1 we obtain

−TA−1I0 =

∫ ∞
0

TI(τ)dτ + TA−1B(S0 − S∞). (7)

Finally, from the law of Ṡ we have D−1(S)Ṡ = −TI, that is∫ ∞
0

TI(τ)dτ = ln

(
S0

S∞

)
= − ln(∆).

Substituting this in (7) and simplifying we obtain the desired
relation.
We can further prove existence and uniqueness of the solution
of (6), and a means to compute it, as follows. Take x ∈ Rm
and define the map

x 7→ F (x) := −TA−1I0 +GD(S0)(1− e−x),

where e−x is the element-wise exponential of −x. Call X the
box {x : 0 ≤ x ≤ x̄} for some x̄ > −TA−1I0 + GD(S0)1.
The following theorem generalizes the result of Theorem 5.4
in [17] to the class of systems in (1), using a similar proof
structure.

Theorem 5: Defining ∆ := e−x and provided that I0 > 0,
the value of ∆ solution of (6) exists and is the unique fixed
point of F (x) in X , and is the limit of the sequence x(k) :=
F (x(k−1)), starting from any x(0) ∈ X .

Proof: X is positively-invariant under F . Consider the
sequences x(k) = F (x(k−1)) with x(0) = 0 and x(0) = x̄. The
map F is order-preserving, F (0) ≥ 0, and F (x̄) < x̄, therefore
the sequences are totally ordered and monotonic. Since they



are also bounded within the compact set X they converge to
fixed points p and q, respectively. Furthermore, since 0 ≤ x ≤
x̄ for all x ∈ X , points p and q are ordered (p ≤ q) and
are lower and upper bounds to the limiting value of x(k) =
F (x(k−1)) for all x(0) ∈ X .

We now show by contradiction that p and q must coincide.
Consider a straight half-line starting from q and going through
p. The line intersects the boundary of X at some point w such
that wi = 0, for some i ∈ {1, . . . ,m}. Call Fi(x) the i-th
component of F . Using Lemma 1 and assumptions (i), (ii)
and (iv), we have that −TA−1 ≥ 0 and all rows have at least
one strictly positive element. This implies that −TA−1I0 > 0
(since I0 > 0) and GD(S0)(1 − e−w) ≥ 0 (since B(1 −
e−w) ≥ 0). This means that Fi(w) > wi = 0. Moreover,
Fi(x) is a concave function of x, hence if we take a weight
α such that p = αw + (1 − α)q, we obtain pi = Fi(p) ≥
αFi(w) + (1 − α)Fi(q) = αFi(w) + (1 − α)qi. Then either
α = 0 (hence p = q), or pi > αwi + (1−α)qi = pi, which is
a contradiction. Therefore F has a unique fixed point in X .

In the statement of Theorem 4, I0 appears as an additive term
in the implicit definition of ∆. This means that the distribution
of individuals in S∞ is minimally affected by the distribution
of the initial seed I0 of infected individuals: as ‖I0‖1 → 0,
S∞ tends to a distribution independent of I0 and implicitly
given by the relation

− ln ∆ = GD(S0)(1−∆), 0 < ∆ < 1.

This is indeed the generalization of (5) to arbitrary models
of the form (1), and GD(S0) now plays the role of R0 in
the implicit expression of the final epidemic size. The above
formula (or its more general version (6)) can be used, given an
estimate of the initial population distribution S0, to evaluate
the most effective among a set of policies affecting matrix G
(e.g., distancing or isolation of given population classes), by
solving an optimization problem

max
G∈G,0<∆<1

Cost(∆) s.t. GD(S0)(1−∆) + ln ∆ = 0,

(8)
where Cost(∆) is a suitable cost function. As a toy example,
consider again the two-population model (2), with a1,1 = 2.4,
a1,2 = 1.2, a2,1 = 1, a2,2 = 2, b1 = b2 = 2, c1 = 1,
c2 = 1.2, S1(0) = 0.5, S2(0) = 0.5 (two populations of
identical size, population 1 has slightly higher probability of
contracting the disease from contacts with members of either
population, and slightly lower recovery rate). Assume that a
fixed amount of protective devices (e.g., face masks) are to be
distributed among the two populations, and their effect is to
reduce the transmission rates, proportionally to the amount of
devices that are distributed. Assume that we aim to minimize
the final epidemic size, so that Cost(∆) := S>0 ∆ = ‖S∞‖1.
Calling α1 and α2 the effect of the distributed devices in
the two populations, respectively, elements of T change as
ai,j 7→ ai,j(1 − αi). Now, assuming that the total amount of
available devices binds α1+α2 = 0.4, we can construct the set
G in (8) as G := {−Tα1,α2

A−1B : α1 + α2 = 0.4}, where
−Tα1,α2

denotes matrix T after rescaling of its elements. A
nonlinear solver (in this case, Matlab fmincon with default

options) finds α1 = 0.4, α2 = 0 as the optimal resource
allocation, corresponding to ‖S∞‖1 ' 0.73. Note that an even
resource allocation (α1 = α2 = 0.2) would have resulted in
‖S∞‖1 ' 0.66: the optimal resource allocation, as opposed
to an even allocation, can in this case spare about 7% of the
population from contracting the disease.

B. The epidemic threshold
An epidemic threshold is a parameter value, in an epi-

demic model, below which the introduction of an infinitesimal
number of infected individuals in an otherwise disease-free
population cannot trigger an epidemic. In the scalar SIR model
without vital dynamics (e.g., [18]), this is given by

S0 <
1

R0
. (9)

When S0 is below threshold, herd immunity prevents an
epidemic outbreak. Mathematically speaking, this means that
I0 is an asymptotically stable equilibrium of (4) with S = S0.
An alternative interpretation of the epidemic threshold in the
same model is as the upper bound to the value of S∞. Once
an epidemic has started, the set of individuals not affected by
the disease at the end of the epidemic wave tends to a value
below the epidemic threshold:

S∞ <
1

R0
. (10)

In vector models such as (1) the fact that a given S be above
or below the epidemic threshold depends not only on ‖S‖1,
but also on the relative value of its elements. Characterizing
the set is therefore a bit more involved. We can generalize the
relations (9) and (10) as follows.

Call Σ1 the set of S vectors such that (4) with input S is
asymptotically stable, and call Σ2 the set of S vectors such
that there exists R ≥ 0 for which (S, I,R), with I = 0 is a
limit point of at least one orbit of (1) with initial condition
(S(0), I(0), R(0)) : I(0) > 0. The two sets coincide and are
characterized as follows.

Theorem 6:

Σ1 = Σ2 = Σ := {S : det(I − cGD(S)) > 0, ∀ c ∈ [0, 1]}.
The proof of this theorem uses the following result
Lemma 7 (See e.g., Corollary 1.5, Chapter 2, in [19]):

Given a Metzler matrix M , its dominant eigenvalue λpf is a
weakly nondecreasing function of any positive perturbation
of the elements of M

Proof: [Proof of Theorem 6] We consider the first two
equations in (1). The value of S is nonincreasing, and since
S is bounded above 0 it must tend to some limit value S∞ ≤
S(t), for all t ≥ 0. We can thus rewrite the equation of I as

İ = (A+BD(S∞)T )I +BD(S − S∞)TI, (11)

which we can see as the linear system

İ = (A+BD(S∞)T )I + d (12)

with a time-dependent perturbation d ≥ 0. The value of I
instead must go to 0 as t → ∞ by the assumption of no
endemic equilibrium. We now show by contradiction that (12)



does not admit any solution I(t) → 0 with I(0) > 0, unless
matrix (A+BD(S∞)T ) is stable.

First, note that (A+BD(S∞)T ) is Metzler. Assume that its
dominant eigenvalue is nonnegative, call v(0) a vector lying in
its stable eigenspace, and assume that v(0) > 0. Then we can
pick two finite perturbations ±p(0) such that v(0)± p(0) ≥ 0
and such that p(0) is a linear combination of the eigenvectors
of (A + BD(S∞)T ) relative to null or positive eigenvalues.
Consider how the flow of an initial condition v(0) ± p(0)
evolves under the vector field (12) with d = 0. We have
limt→∞ v(t)±p(t) = limt→∞±p(t), with limt→∞ |p(t)| > 0.
Since ±p(t) cannot belong to the positive orthant at the same
time, but the positive orthant of (12) is positively invariant, we
conclude that the stable eigenspace of (A+BD(S∞)T ) cannot
contain any vector v > 0, unless the dominant eigenvalue of
(A+BD(S∞)T ) is negative.

Now we take, as by assumption, an arbitrary I(0) > 0. By
the above reasoning this vector must have nonzero component
in the centre or unstable eigenspaces of (A+BD(S∞)T ), if
they exist. This implies that if (A+BD(S∞)T ) is not stable
then the solution of the linear equation (12) cannot go to 0 for
any d ≥ 0, and the same must hold for the solution of (11).
We thus conclude that (A+BD(S∞)T ) is stable at any limit
point S∞. This means that Σ1 = Σ2.

We can now characterize the set Σ. By the matrix determi-
nant lemma, we have

det(A+BD(S)T ) = det(A) det(I + TA−1BD(S)) =

det(A) det(I −GD(S)),

and given that A is stable by assumption, A + BD(S)T is
stable only provided that det(I+TA−1BD(S)) > 0. Also, by
Lemma 7, if A+BD(S)T is stable then so is A+BD(cS)T ,
for any c ∈ [0, 1]. These facts together give that stability of
A + BD(S)T implies that det(I − GD(cS)) > 0, for all
c ∈ [0, 1].

To prove that the converse also holds, note that by the above
mentioned matrix determinant lemma det(I −GD(cS)) > 0,
for all c ∈ [0, 1], implies that det(A + BD(cS)T ) 6= 0, for
all c ∈ [0, 1]. Since A + BD(cS)T is Metzler, the Perron
Frobenius theorem ensures its dominant eigenvalue is real.
We know that A + BD(cS)T is stable for c = 0, so it can
only lose stability through a zero crossing of its real dominant
eigenvalue, which would imply det(A + BD(cS)T ) = 0.
Therefore we have

A+BD(S)T is stable ⇔ det(I−GD(cS)) > 0, ∀ c ∈ [0, 1].

We have seen before that S∞ must be such that A +
BD(S)T is stable, so the above statement is equivalent to

S ∈ Σ⇔ det(I − cGD(S)) > 0, ∀ c ∈ [0, 1].

The result in Theorem 6, which generalizes the epidemic
threshold, can also be restated as follows:

Corollary 8: Σ := {S : ρ(GD(S)) < 1}, where ρ is the
spectral radius.

Proof: The eigenvalues of cGD(S) are a continuous
function of c. Given that, for c = 0, all eigenvalues of

I − cGD(S) are strictly positive, and given that the dominant
eigenvalue of cGD(S) is real (the matrix is nonnegative),
det(I − cGD(S)) > 0, for all c ∈ [0, 1], implies that all
eigenvalues of I − cGD(S) remain strictly positive for all
c ∈ [0, 1], including c = 1. This means that the dominant
eigenvalue of GD(S) must be smaller than 1. As this is also
the spectral radius by the Perron Frobenius theorem, we have
ρ(GD(S)) < 1.

The results above prove the almost global asymptotic sta-
bility of the states with S ∈ Σ and I = 0, and characterize
the set Σ by the inequality ρ(GD(S̄)) = R0 < 1. Equivalent
characterizations have been given before albeit with different
proofs, see e.g., [20] (Theorem 2). What makes the above for-
mulation novel, besides the different proof, is that it elucidates
the relation between these results and the classical theory of
linear feedback systems: calling F the loop transfer function of
(4) for a fixed S, ρ(GD(S)) ≤ ‖F‖∞, where the latter denotes
the H∞ norm of the transfer function. Therefore, the stability
of (4) by the Small Gain Theorem implies S ∈ Σ. This means
that questions related to S ∈ Σ, such as the ability of a new
disease to trigger an epidemic or the minimum number of
infected at the end of an epidemic wave, when the nonlinear
model (1) is subject to parametric or modelling uncertainties,
can be attacked using linear robust stability techniques [21].

C. Social distancing always reduces the total infected
population

To conclude, we remark that in the first few months of the
COVID-19 pandemic, when data was insufficient to reliably
identify any predictive model, numerous publications stated
that a reduction of social contacts (in (1), a reduction of the
value of the elements of T ) was nonetheless a fundamental tool
to reduce the impact of the pandemic, as numerical simulations
showed that it contributed to reducing the final epidemic size.
While this is certainly a true and important message to convey
to decision makers and to the public, its truth did not need the
use of numerical simulations to be supported, as it holds for
any, arbitrary SIR-like model of the form (1):

Theorem 9: Let I0 > 0, and let Tjk be element (j, k) of
matrix T . Then, dS∞

dTjk
≤ 0 and dS∞

dTjk
6= 0.

Proof: We have seen that S∞ and T are related through
the vector-valued equation

H(s∞, T ) := ln

(
S0

S∞

)
+TA−1I0+TA−1B(S0−S∞) = 0.

We have that dH(S∞,T )
dTjk

= ∂H(S∞,T )
∂Tjk

+ ∂H(S∞,T )
∂S∞

dS∞
dTjk

=

0, and ∂H(S∞,T )
∂S∞

= −D−1(S∞) − TA−1B = −(I −
GD(S∞))D−1(S∞). We know that S∞ > 0, otherwise it
would not satisfy H(S∞, T ) = 0 due to the log term,
so D−1(S∞) exists. Also, from Theorem 6 we know that
(I − GD(S∞)) is nonsingular. This implies that ∂H(S∞,T )

∂S∞
is invertible, therefore

dS∞
dTjk

= −
(
∂H(S∞, T )

∂S∞

)−1
∂H(S∞, T )

∂Tjk
.



Putting the expression for H(s∞, T ) in the above formula we
obtain

dS∞
dTjk

= D(S∞) (I −GD(S∞))
−1 (

δ(j, k)A−1I0+

δ(j, k)A−1B(S0 − S∞)
)
,

where δ(j, k) is a matrix with all elements equal to
zero, except element (j, k), which is equal to 1. Now,
by assumption we have I0 > 0, while by Lemma 1
A−1 ≤ 0. Since all other terms in the expression(
δ(j, k)A−1I0 + δ(j, k)A−1B(S0 − S∞)

)
are nonnegative

and A−1 is nonsingular, we have(
δ(j, k)A−1I0 + δ(j, k)A−1B(S0 − S∞)

)
≤ 0.

Furthermore, having A−1 ≤ 0 and nonsingular, and having
I0 > 0, imply that A−1I0 < 0, therefore(

δ(j, k)A−1I0 + δ(j, k)A−1B(S0 − S∞)
)
6= 0.

We then know, from Corollary 8, that I −GD(S∞) is stable
and invertible, and we can easily verify that −(I−GD(S∞)) is
Metzler, so by Lemma 1 we know that (I −GD(S∞))

−1 ≥ 0.
Therefore,

(I −GD(S∞))
−1 (

δ(j, k)A−1I0+

δ(j, k)A−1B(S0 − S∞)
)
≤ 0.

Nonsingularity of (I −GD(S∞))−1 implies

(I −GD(S∞))
−1 (

δ(j, k)A−1I0+

δ(j, k)A−1B(S0 − S∞)
)
6= 0.

Finally, we have already seen that D(S∞) ≥ 0 and is
nonsingular, therefore

dS∞
dTjk

≤ 0,
dS∞
dTjk

6= 0.

IV. CONCLUSIONS

Taking a large class of SIR-like models, which covers
many modern state-of-the-art networked, spatially explicit,
and socially stratified models, we have shown how the basic
reproduction number, commonly termed R0, is linked to the
gain matrix of a linear system. This highlights a stronger
connection than commonly acknowledged between a large
class of epidemic models and the linear-feedback systems.
We have shown how this matrix (and not just its spectral
radius), plays the role of R0 in the computation of the
final epidemic size and the epidemic threshold, and how the
epidemic threshold is essentially a simple by-product of the
small gain theorem. Finally, we have formally proved that for
all systems in the above-mentioned class, a reduction in the
rate of contacts (at any time during the epidemic) reduces the
final epidemic size.
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